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. ABSTRACTY
Most current approaches to concurroncy' control in database systems rely on locking of data
" objects as a control mechanism. In this paper, two families of non-locking concurrency
controls are presentad. The methods used are "optimistic® in the sense that they rely mainly
on transaction backup as a control mechanism, *hoping® that conflicts between transactions
will not occur. Applications where these methods should be more efficient than locking are

discussed. ¥ _\[
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1. Introduction | - E»

Consider the problem of " providing shared access to a data structure organized as a
| directed graph, le, a collection of nodes where each node consists of some values local to
' 1 that node and some pomters to ‘other nodes. Certain distinguished nodes, called the roots,
i ‘ are always present, and “access to any node "other than a root Is gained only by first - }
] accessing a root and then following pointers to that node. Any sequence of sccesses to the
data structure that preserves the integrity constraints of the data is called a transaction (see,

eg. [5D. : -t i .

_If our goal is to maximize_,t_tio throughput of accesses to the data structure, then there ll"
at least two cases where highly concurrent access is desirable: !
- The amount of data is sufficiently great that at any given time oﬁly a fraction of .

the data structure can be present in primary memory, so that it Is necessary to '
swap parts of the data structure from secondary memory ss needed.

. = Even if the entire data structure can be present in primary momory. there may
be multiple processors.

In both cases the hardware will be undar-utllized if the degree of concurrency is too low.

However, as is well-known, unrestricted concurrent access to a shared date structure will
in general cause the integrity of the data structure to be lost. Most current approaches to i
this problem involve some type of locking. That is, a mechanism is provided whereby one
process can deny certain other processes access to some portion of the data structure. In
particular, a lock may be associated with each node of the directed graph, and any given
" process is required to follow some locking protocol, so as to gusrantee that no other process
can ever discover any lack of integ(ity in the data structure temporarily caused by the given
process. : :

The locking npproach has the following inherent disadvantages:

1. Lock maintenance represents an overhead that is not present in the sequential i
case. Even read-only transactions (queries), which cannot possibly atfect the :
integrity of the data, must in general use locking in order to gusrantee that the ]
data being read are not modified by other transactions at the same time. Also, if )

- the locking protocol is not deadlock free, deadlock detection must be considered
to be part of lock msintenance overhead. In the case of System R (1] it has 1
been noted that lock: mintemnco npresonh 107 of total execution time {6} ‘

2. There are no’ ;ononl purposo deadlock-free locking protocols for directed graph iite Section a '
access algorithms that; slways provide high concurrency. Because of this, some -
resesrch has been directed at developing specisl purpose locking protocols for
various spoclal cases ‘of the general directed graph structuro. sccess sigorithms,

¥
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PAGE 2 INTRODUCTION SECTION 1

and integrity criteria. In the case of B-trees [2] at least nine locking protocols
have been proposed [3, 4, 10, 11, 14]

3. In the case that large parts of the data structure sre on secondary memory,

, concurrency is significantly lowered whenever it is necessary to lesve some

congested node locked (a congested node is one that is often eccessed, eg. »
root) while waiting for a secondary memory access.

4, To aliow s transaction to abort itself when mistakes occur, locks cannot be
released until the end of the transaction. This may sgain significantly lower
concurrency.

5. Most important for the purposes of this paper, locking may be necessary at all
only in the worst case. Consider the following simple example: the directed
graph consists solely of roots, and each transaction involves one root only, any
root equally likely. Then if there sre n roots and two processes executing
transactions at the same rate, locking is really needed (if ot ail) svery n
transactions, on the average.

In general, one may expect the argument of 5) to hold whenever a) the number of nodes in
the graph is very large compared to the total number of nodes involved in sll the running
transactions at a given time, and b) the probability of modifying a congested node is small. In
many spplications, a) and b) are designed to hold (see Section 6 for the B-tree applicstion).

Research directed at finding deadiock-fres locking protocols may be sssn as an attempt to
lower the expense of concurrency control by eliminating transaction beckup ss a control
mechanism. In this paper wé consider the converse problem, thst of eliminating locking. We
propose two families of concurrency controls that do not use locking. These methods are
“optimistic™ in the sense that they rely for efficiency on the hope that conflicts between
transactions will not occur. If 5) does hold, such conflict will be rare. This approach siso has
the advantage that it is completely general, applying equally well to any shared directed
graph structure and associated access algorithms. Since locks are not used, it is

" deadlock-free (however, starvation Is a possible problem, » solution for which we discuss). It

is also possible using this approach to avoid problem 3) sand 4) above. Finelly, it the

~ transaction pattern becomes query dominant (i.e, most transactions are read-only), then the

concurrency control overhead becomes aimost totally negligible (a partial solution to problem
D). '

The ides behind this optimistic approach is quite simple, and may be summarized as follows:

- Since reading a value or a pointer from a node can never cause s loss of
integrity, reads are completely unrestricted (however, returning a resuit from e
query is considered o be equivalent to a write, and 30 is subject to validation ss
discussed below).
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- Writes are severely restricted. It is required that any transaction consist of two
or three phases: a read phase, a validation phase, and a possible write phase.
During the read phase, all writes take place on local copies of the nodes to be
modified. Then, if it ‘can be established during the validation phase that the
changes the transaction made will not cause a loss of integrity, the local copies
are made global in the write phase. : In the case of s query, it must be
determined that the result the query would return is actually correct. The step
in which it is determined that the transaction will not cause a loss of integrity (or
that it will return the correct result) is called validation.

read\-\. . R valoda\tion oy w}'ﬂ‘o
— .
\\ ‘o é'_.-; \ . / .
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Figuré 1. The three phases of a transaction T

If; in a locking approach, locking is only necessary in the worst case, then in an optimistic
approach vaslidation will fail also only in the worst case. If validetion does fail, the transaction
will be backed up and start over again as s new transaction. Thus, e transaction will have @
write phase only if the proce:ding validation succeeds.

-

In Section 2 we discuss in more detail the resd and write phases of transactions. In
Sectibn 3a partlcularly strong form of validation is presented. The correctness criteria used
for validation are based on the notion of serial equivalence [5, 13, 15]. In the next two
sections concurrency controls ars presented that rely on the serisl equivalence criteria
developed in Section 3 for validation. The family of concurrency controls in Section 4 have
serial final validation steps, while the concurrency controls of Section 5 have completely
paraliel validation, st however higher totsi cost. In Section 6 we anslyze the application of
optimistic methods to controlling concurrent insertions in B-trees. Section 7 contains @
summary and a discussion of future research.

2. The Read and Write Phases

In this section we briefly discuss how the éoncumncy. control can support the reed and
write phases of user pro;ry_nmed trensactions (in a manner invisible to the user), and how

this can be implemented sffjciently. The validation phase will be treated in the following -

three sections. ‘ ST
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PAGE 4 THE READ AND WRITE PHASES SECTION 2

We assume that an underlying system provides for the manipulation of objects of various
- types, and that each node of the directed graph structure is an object. For simplicity, sssume
all nodes are cbjects of the same type. Objects are manipulated by the following caells of the
concurrency control, where » is the name of an object, { is a parameter to the type manager,
and v is a value of srbitrary type (v could be a pointer, i.e. an object name, or date):

create create a new object and return its name.
delete(n) delete object .

read(n,) read item i of object n and return its value.
write(n.v) write v as item ¢ of object n.

In order to support the read and write phases of transactions we will also use the
following calls:

eopy(n) create 2 new object that is a copy of object n and return its name.

exchange(ni, n2) exchange the names of objects n! and n2.

The concurrency control is invisible to the user; transactions are written as if the above
calls were used directly. However, transactions are required to use the syntactically identical
calls tcreate, tdelete, tread, and twrite to the concurrency control. For each transaction, the
concurrency control maintains sets of object names accessed by the transsction. These sets
“are initislized o be empty by a tbegin call. The body of the user written transaction is in
fact the read phase mentioned in the introduction; the subsequent validation phase does not
begin until after a tend call. The semantics of the calis to the concurrency control are as
follows:

tereate =
(n := create;
create set := create set U {n);
RETURN n)

twrite(ny) =

(IF n € create set

THEN write(niv)

ELSE IF n € write set

THEN write(copies{n)iv)

ELSE (m := copy(n);
copies{n] == m;
write set := write set U {n};
write(copies(nliv) ) )

S e St
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tread(n,i) =

(read set := read set U {n);
IF n € write set .
THEN RETURN read(copies[n]i) -
ELSE RETURN read(n,i) )

tdelete(n) = 1
(delete set := delste set U {n})

Above, copies is an associative vector of object names, indexed by object name. We ses
that in the read phase, no global writes take place. Instead, whenever the first write to a
given object is requested, a copy is made, and all subsequent writes are directed to the cépy.
This copy is potentially global, but is inaccessible to other transactions during the read phase
by our convention that all nodes are accessed only by following pointers from s root node. If
the node is a root node, the copy is inaccessible since it has the wrong name (all transactions
“know" the global names of root nodes). It is assumed that no root node is created or
deleted, that no dangling pointers are left to deleted nodes, and that created nodes become
accessible by writing new -pointers (these conditions are part of the integrity criteria for the
data structure that each transaction is required to individually pressrve).

When the transaction completes, it will request its validation and write phases vis s tend
call. If validation succeeds, then the transaction enters the write phase, which is simply:

FOR n € write set DO exchange(n, copiesn)) .

After the write phase all wrlfton values become “global®, all created nodes become accessible,
and all deleted nodes become inaccessible. Of course some cleanup is necessary, which we

do not consider to be part of the write phase since it does not intsract with other
transactions: ' . :

(FOR n € delste set DO delete(n);
FOR n € write set DO delete(copies(n)) ).

Similar types of clesnup may be necessary for transaction backup, which we do not consider
in detsil here. ‘

Note that since objoctg re viriual (objects are referred to by name, not by physical
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. address) the exchange operation, and hence the write phase, can be made quite fast:
essentially, all that is necessary is to exchange the physical sddress perts of the two object
descriptors.

Finally, we note that the concept of two-phase transactions appears to be quite valuable
for recovery purposes, since at the end of the read phase, all changes that the transaction
intends to make to the data structure sre known,

3. The Validation Phase

A widely used criterion for verifying the correctness of concurrent execution of
trans'actlons has been variously called serial equivalence [5), serial reproducibility [12] snd
linearizability [15] This criterion may be defined as follows:

Let transactions T{,T,.,T,, be executed concurrently. Denote sn instance of the
shared data structure by d, and let D be the set of all possible d, s0 thet each Ti
may be considered as s function:

Ti: D=-D.
If the initial data structure is d; and the final data structure is dj, the concurrent

oxetcution of transactions is correct if some permutation n ot {1 } exists such
tha

4=Tn(n)Tn(n-1°-0Tn(2)°Tn(1)(dih Y
where "0" is the ususl notation for functionsl composition.

The idea behind this correctness criterion is that, first, each transaction is sssumed to have
been written so as to individually preserve the integrity of the shared data structurs. That
is, if d satisfies all integrity criteria, then for each T, Ti(d) satisfies sil integrity criteria. Now,
if d; satisfies all integrity criteria and the concurrent execution of T1:T26Tpy is serially
equivalent, then from (1), by repeasted spplication of the integrity preserving property of
each transaction, d; satisfies all integrity criteria. Serisl equivalence is useful as a
correctness criterion since it is in general much easier to verify that a) esch transaction
preserves integrity and b) every concurrent execution of transactions is serially equivalent,
then it is to verify directly that every concurrent execution of trsnsactions preserves
integrity. In fact, it has been shown in (8] that serislization is the weakest criterion for
preserving consistency of a concurrent transaction system, even if complete syntatic
information of the system is availsble to the concurrency control. However, if sementic
informstion is avsilable, then other approsches may be more attractive (see, o.g., [7, 9).
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3.1. Validation of Serial Equivalence

The use of validation of serial equivalence as a concurrency control is a direct application
of condition (1) above. However, in order to verify (1), a permutation n must be found. This
is handled by explicitly assigning e‘ach transaction T; a unique integer transaction number (i)
during the course of its execution.' The meaning of transaction numbers in validation is the
following: there must exist a serially equivalent schedule in which transaction Tl comes
before transaction T; whenever t(j) < t(i). This can be guaranteed by the following validation
condition: For each transaction T; with transaction number (1), and for all T, with #()) < &),
one of the following three._copditions must hold (see Figure 2): .

1. Tj completes its write phase before T; starts its read phase.

2. The write set of T; does not intersect the read set of T;, and Tj completes its
write phase before T; starts its write phase. ‘

3. The write set of T; does not intersect the read set or the write set of T;, and T
completes its read phase before T; completes its read phase.

I % ———— - - —
T ———-- - :
» | N == —

@ . . I'——'——_(' ey ‘
- T bt~ -

T; ) S —

(1)

@

-~

ﬁgﬁn 2. Mible interleaving of Ti and T‘

Condition 1) states thai Ti actually completes before T; starts. Condition 2) states that the
writes of TI do not affect the read phase of T;, and that T, finishes writing before T; starts
writing, hence does not overwrite T; (also, note that T; cannot sffect the read phase of Tl)‘
Finally, condition 3) is similar to condition 2), but does not require that 1’, finish writing
before T; starts writing; it simply requires that Tl not sffect the read phase or the »wrlh
phase of T; (agein, note that T; cannot affect the read phase of Tl’ by the lest pert of the
condition). See [13] for a set of similar conditions for serialization. ‘
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3.2. Assigning Transaction Numbers

The first consideration thst arises in the design of concurrency controls that explicitly
assign transaction numbers is, how should transaction numbers be assigned? Clearly they
should somehow b_e assigned in order, since if Tj completes before T; starts, we must have
t(j)<t(i). Here we uses the simple solution of maintaining a global integer counter TNC
(transaction number counter); when a transaction number is needed, the counter is
incremented, and the resuiting value returned. Also, transaction numbers must be assigned
some~vhere before validation, since the validation conditions above require knowledge of the
transaction number of the transaction being validated. On first thought, we might assign
transaction numbers st the beginning of the read phase; however, this is not optimistic (hence
contrary to the philosophy of this paper) for the following reason. Consider the case of two
transactions, T; and Ty, starting at roughly the same time, assigned transaction number n and
n+1, respectively. Even if Tp completes its read phase much earlier than Ty, betfore being
validated Tz must wait for the completion of the read phase of Tl' since the validstion of Tz
in this case relies on knowledge of the write-set of Ty. See Figure 3. In an optimistic
approach, we would like for transactions to be validated immediastely if at all possible (in
order to improve response time). For these and similar considerations we assign transaction
numbers at the end of the read phass. Note that by assigning transaction numbers in this
fashion the last part of condition 3), that T] complete its read phase before T; completes its
read phase if t(j)<t(i), is automatically satistied.

Ty

(_ _—'—")_'l (l)=n
Ta '—_.......(__,__) ' t(2) =« nag

Figore 3. T waits for Ty in ++ -

——

3.3..Some Practics! Considerations

Given this method for assigning transaction numbers, consider the case of s transaction T
that has an asrbitrerily long read phase. When this transection is validated, the write sets of
sl transactions that completed their read phase before T but hed not yet completed their
write phase at the start of T must be examined. Since the concurrency control can only
maintain finitely many write sels, we have a difficulty (this difficulty does not arise it
transaction numbers are sssigned at the beginning of the read phase). Clearly, If such
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transactions are common, the assignment of transaction numbers described above s
unsuitable. Of course, we take the optimistic approach and assume such transactions are
very rare; still, a solution is ‘needed. We solve this problem by only requiring the
concurrency control to maintain some finite number of the most recent write sets, where the
number is large enough to validate almost all transactions (we say write set a is more recent

than write set b if the transaction number associated with a is greater than that associated -

with b). In the case of transactions like T, if old write sets are unavailable, validation fails,
and the transaction is backed up (probably to the beginning). For simplicity, we present the

‘concurrency controls of the next two sections as if potentially infinite vectors of write sets

were maintained; the above convention is to be understood to apply.

One last consideration must be mentioned at this point, namely, what should be done when
validation fails? It will be determined during validation exactly which objects were “dirtied”,
i.e., modified by transactions with transaction numbers less than the transaction number of
the transaction being validated after the start of the read phase. The transaction will then
be backed up to the ear!igst such point and continued, receiving a new transaction number at
the completion of the ‘read. phase. Now a new difficulty arises: what should be done in the
case that validation reﬁealedly fails? Under our optimistic assumptions, this should happen
rarely, but we still need some method for dealing with this problem when it does occur. A
simple solution is the following: we associate a lock with the transaction number counter, and
this lock can be either read-locked or write-locked (read-locks lock out only write-locks;
write-focks lock out all c;fther locks). Normally, the°concurrency control brackets access to the

transaction number counter with a read lock-unlock pair. However, if the concurrency control '

detects a “"starving” transaction (this could be detected by keobing track of the number of

times validation for a given transaction fails), the transaction is restarted, this time using o'

write lock, which is not unlocked until the transaction is validsted. When the write~lock is
finally granted (standard techniques can be used to ensure that a write-lock does not cause

_ starvation), all subsequent transactions will be locked out, until the "starving” transaction can

run to completion. ~ '

4, Serial Validation

" In this section we present a family of concurrency controls that are an implementation of
validation conditions 1) and 2) of the previous section. Since we are not using condition 3),
the last part of condition 2) implies that write phases must be serisl. The simplest way to
impiement this is to place the assignment of a transaction number, validation, and the
subsequent write phase all in a critical section. In the following, we bracket the critical
section by “<" and ™", The concurrency control is as follows:




PAGE 10 SERIAL VALIDATION SECTION &

thegin =
(create set := empty;
read set := empty;
write set := empty;
delste set :» empty;
start tn ;= TNC)

tend =
( <finish tn := TNC;
valid := TRUE;
FOR t FROM start tn+1 TO finish tn DO
IF (write set of transaction with trans. no. t
intersects read set)
THEN valid := FALSE;
IF valid
THEN ((write phase); TNC:=TNC+{; tn:=TNC) >;
IF valid
THEN (cleanup)
ELSE (backup) )

In the above, the transaction is assigned a transaction number via the sequence TNC :=
TNC+1; tn := TNC. An optimization has been made in that transaction numbers are assigned
only it validation is successful. We may imagine that the transaction is “"tentatively” assigned
a transaction number of TNC+{ with the statement finish tn := TNC, but that if validstion fails,
this transaction number is freed for use by another transaction. By condition 1) of Section 3,
we need not consider transactions that have completed their write phase before the start of
the read phase of the current transaction. This is implemented by resading TNC in tbegin;
since a "real” assignment of a transaction number takes place only after the write phase, it is
guaranteed at this point that all transactions with transaction numbers less than or equael to
start tn have completed their write phase.

The above is perfectly suitable in the case that there is one CPU and that the write phase
can usually tske place in primery memory. If the write phase often cannot take place in
primary memory, we probably want to have concurrent write phases, unless the write phase
is still extremely short compared to the read phase (which may be the case). The
concurrency controls of the next section are appropiste for this. If there are multiple CPU's,
we may wish to introduce more potential parallelism in the validation step (this is only
necessary for efficiency if the processors cannot be kept busy with read phases, i.e. if
validation is not extremely short as compared to the read phase). This can be done by using
the solution of the naxt section, or by the following method. At the end of the reed phase,
we immediately read TNC before entering the critical section, and sssign this value to mid ta.
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It is then kno\m that at this point the write sels of transactions
start tn+l, start tn+2, ..., mid tn must certainly be examined in the validation step, and this can
be done outside the critical section. The concurrency control is thus:

- tend =
{mid tn := TNC;
valid := TRUE;
FOR t FROM start tn+1 TO mid tn DO
IF (write set of transaction with trans. no. t
intersects read set)
THEN valid := FALSE;
<finish tn := TNC;
FOR t FROM mid tn+] TO finish tn DO
IF (write set of transaction with trans. no. t
intersects read set)
THEN valid := FALSE; |
IF valid - ‘
THEN ((write phase); TNC:=TNC+1; tn:=TNC) >;
IF valid
THEN (cleanup)
ELSE (backup) )

The above optimization can be carried out a second time: at the end of the pfe"minory

validation step we read TNC a third time, and then, still outside the critical section, check the

- write sets of those transactions with transaction numbers from mid tn+f to this most recent
value of TNC. Repeating this process, we derive a family of concurrency controls with

- varying numbers of stages of validation and degrees of parallelism, all of which however have
a final indivisible validation step and write phase. The idea is to remove varying parts of the

work done in the critical section outside the critical section, allowing greater parallelism. N

Until now we have not considered the question of read-only tnnsacﬁom. of queries. Since
queries do not have a write phase, it is unnecessary to assign them transaction numbers. It
is only necessary to read TNC at the end of the read phase and assign its value to finish tn;
validation for the query then consists of examining the write sets of the transactions with
transaction numbers start tn+{, start tn+2, .., finish tn. This need not occur In a critical
section, so the above discussion on multiple validation stages does not apply to queries. This

. method for handling queries also applies to the concurrency controls of the next section.
Note that for query dominant systems, validation will often be trivial: it may be determined
that start tn = finish tn, snd velidation is complete. For this type of system sn optimistic
approsch appears ideal. 4
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S. Parallel Validation

In this section we present a concurrency control that uses all three of the validation
conditions of Section 3, thus allowing greater concurrency. We retain the optimization of the
previous section, only assigning transaction numbers afier the write phase if validation
succeeds. As in the previous solutions, TNC is read at the beginning and the end of the read
phase; transactions with transactions numbers start tn+], start tne2, .., finish tn all may be
checked under condition 2) of Section 3. For condition 3), we maintain a set of transaction
ids active for transactions that have completed their read phase but have not yet completed
their write phase. The concurrency control is as follows (tbegin is as in the previous
section):

tend =
" ( <finish tn := TNC;
Jinish active := (make a copy of active);
" active := active U {id of this transaction} >;
valid := TRUE; ,
FOR t FROM start tn+1 TO finish tn DO
IF (write set of transaction with trans. no. t
intersects read set)
THEN valid := FALSE;
FOR i € finish active DO
IF (write set of transaction T intersects
read set or write set)
THEN valid := FALSE;
IF walid
THEN ( (write phase);
<TNC := TNC+{;
tn := TNC;
active := active - {id of this transaction} >;
(cleanup) )
ELSE (<active:mactive-{id of transaction}>;
(backup) ) )

In the above, at the end of the resd phase active is the set of transactions that have been
sssigned "tentative” transaction numbers less than that of the transaction being validated.
Note that modifications to active and TNC are placed together in critical sections so as to
maintain the invariant properties of active and TNC mentioned above. Entry to the first
critical section is equivalent to being assigned s “tentative” transaction number.

One problem with the above is thst s transaction in the set finsih active may invalidate the
given transaction, even though the former transaction is itself invelideted. A partial solution
to this is to use several stages of preliminary validation, in a way completely anslagous to the
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multistage validation described in the previous section. At each stage, a new value of TNC is

E read, and transactions with transaction numbers up to this value are checked. The final stage
' then involves accessing active as above. The idea is to reduce the size of active by
3 performing more of the validation before adding a new transaction id to active.

Finally, a solution Is possible where transactions that have been invalidated by a
) transaction in firish active wait for that transaction to either be invalidated, and hence
1 ignored, or validated, causing backup.1 However, this solution involves a much more
sophisticated process communication mechanism than the binsry semaphore needed to
implement the critical sections above.

6. Analysis of an Application

We have previously noted that an optimistic approach appears ideal for query dominant
systems. In this section we consider another promising application, thst of supporting
concurrent index operations for very large tree structured indexes. In particular, we examine
the use of an optimistic method for supporting concurrent insertions in B-trees (see [2)).
. Similar types of analysis and similar results can be expected for other types of
tree-structured indexes and it_vdex operations.

One consideration in analyzing the etficiency of an optimistic method is the expected size
of read and write sets, since this relates directly to the time spent in the validation phase. '
For B-trees, we naturally choose the objects of the read and write sets to be the pages of
the B-tree. Now even very large B-trees are only a few levels desp. For example, lot a
1 B-tree of order m contain N keys. Then if m = 199 and N s 2x108-2, the depth is at most
14+ogoq((N+1)/2) <5. Since insertions do not read or write more than one already existing
node on a given level, this means that for B-trees of order 199 containing up to simost two
hundred million keys, the size of a read or write set of an insertion will never be more than
4. Since we are able to bound the size of read and write sets by a small constant, we
conclude that validation will be fast, the validation time essentislly being proportional to the
degree of concurrency.. )

Another important consideration is the time to complete the validation and write phases as
compared to the time to complete the read 'phaso (this point was mentioned in Section 4)
B-trees are implemented using some paging aigorithm, typicelly lesst recently used page

" replaced first. The root page and some of the peges on the first level are normally in

17iie possivility wes pointed out by Jemes Sane.
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primary memory; lower level pages usually need to be swapped in. Since insertions always
access a leaf page (here, we call a page on the lowest level » loaf page), a typical insertion
to a B-tree of depth d will causeid-1 or d-2 secondary memory accesses. However, the
validation and write phases should be able to take place in primary memory. Thus, we expect
the read phase to be orders of magnitude longer than the validstion and write phases. In
fact, since the "densities” of validation and write phases are so low, we believe that the serial
validation algorithms of Section 4 should give acceptable performance in most cases.

Our final and most important consideration is determing how likely it is that one insertion
will cause another concurrent insertion to be invalidated. Let the B-tree be of order m (m
odd), have depth d, and let a be the number of leaf piges. Now, given two insertions 1; and
I3, what is the probability that the write set of I; intersects the read set of 15! Clearly this
depends on the size of the write set of 1, and this is determined by the degree of splitting.
Splitting occurs only when an insertion is sttempted on an already full page, and results in an
insertion to the page on the next higher level. Lacking theoretical results on the distribution
of the number of keys in B-tree pages, we make the conservative assumption that the
number of keys in any page is uniformly distributed between (m-1)/2 and m-1.2 We also
assume that an insertion accesses any path from root to leaf equally likely. With thess
assumptions we find that the write set of I; has size { with probability:

w2 - 20

.Given the size of the write set of I}, an upper bound on the probability that the read set
of I intersects the sub-tree written by 1; is essily derived by sssuming the maximel number
of pages in the sub-tree, and is:

m‘-l
Pl“’ < -

Combining these, we find the probability of conflict pp satisties:

2Tl|i.hocmﬁwnm‘hndneoﬂpndkhﬂmuﬂnhdmmmu

results
storage vtilizetion [18), which show thet storage ulilization is sbout 692 Since nodes are on the average emptior then
our sssumption implies, this suggests thet the probebility of eplitting we use is hig

>
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Pc = z 2 Pstortd

i-1

(l i ”“l)lssd ("'*1

For example, If d = 3, m = 199, and n = 109, we have ps <.0007 . Thus, we see that it is
very rare that one insertion would cause another concurrent insertion to restart for large
B‘trees. T

* 7. Conclusions

‘A great deal of research has been done on locking approaches to concurrency control, but
as noted above, in practice two control mechanisms are used: locking and backup. Here we
have begun to investigate solutions to concurrency control that rely aimost entirely on the
latter mechanism. We may think of the optimistic methods presented hers as being
ofthogonal to locking methods in several ways:

- In @ locking approach, transactions are controlled by having them wait ot certain

points, while in an optimlstic approach, transactions are controlled by backing
them up.

- In a locking approach, ‘serial equivalence can be proved by partially ordering the
transactions by first access tﬁme for each object, while in an optimistic approach, -
transactions are ordered by transaction number assignment. A

~ The major difficulty in locking approsches is deadiock, which can be solved by -

using backup; in an optimistic approach, the major difficulty is starvation, which
can be solved by using locking.

We have presented two families of concurrency controls with varying degrees of

concurrency. These methods are definitely superior to locking methods for systems where
‘transaction conflict is highly "unlikely. Examples include query dominant systems and very
large tree structured indexes. For these cases, an optimistic method will avold locking
overhead, and may tske full sdvantage of a multiprocessor environment in the validation
phase using the parallel validation techniques presented. Some techniques are definitely

needed for determining all instances where an optimistic approach is better than a locking

spproach, and in such cases, which type of oplimistic approsch should be used.

A more gsneral problem is the following: consider the case of a data base system where
transaction conflict is rare, but not rare enough to justify the use of any of the optimistic
approaches presented here. Some type of generalized concurrency control is needed that

i
i
i
q
i
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provides “just the right amount® of locking versus backup. Ideslly, this shouid very ss the
likelihood of transaction conflict in the system varies.
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